The Milky Way Halo Design Reference Surveys

Andreas Korn

<image>

on behalf of the Halo Survey Coordinators (A Helmi, N Christlieb, M Irwin) and SWP Team

The Halo = Galactic Wild West

The Halo = Galactic Wild West

- What were the properties of the First Stars?
- What is the metallicity distribution function (MDF) of the halo? What is its temporal evolution?
- How different are the chemical enrichment histories of the progenitor systems?

- What were the properties of the First Stars?
- What is the metallicity distribution function (MDF) of the halo? What is its temporal evolution?
- How different are the chemical enrichment histories of the progenitor systems?
- What is the shape of the DM halo: spherical, oblate, prolate, triaxial? Can we trace its temporal evolution?
- How many building blocks, dark and luminous-but-faint, are there: enough to explain the satellite crisis?
- How was the Milky Way assembled? Bulge, bar, thick disk...

Gaia – to be launched in October 2013

00

Gaia in a nutshell (2013 – 2018) 10⁹ stars $\sigma = 20 \mu as @ V=15$

photometry for 10⁹ stars radial velocities for 10⁸ stars stellar parameters for 10⁷ stars

2

6

25

Stellar Physics & Galactic evolution

+3.2

+1.2

-2.0

K0 IV

Ko III

K0 II

courtesy of U. Munari

reddening

luminosity

Potsdam

temperature

metallicity

MARCINE MEDICE

Limitations of Gaia II: A_i

Constraints:

V, M_V : go deep into the halo \Rightarrow K giants (TOP stars) as tracers FOV/sky coverage: needs to be large, as target density is fairly low R: 5,000 (LR) / 20,000 (HR) is a good compromise given the lower line density in spectra of metal-deficient stars

 λ : covering key elements, for the spectroscopic analysis (v_{rad} , T_{eff} , log g) and probing the major nucleosynthetic channels (up to 20 species)

Halo LoRes DRS

Target density: 100-200 K giants deg⁻² down to V=20

To constrain the **mass distribution of the MW and the DM granularity** imprinted on the velocities of stream stars, we need to

- survey 5,000 deg²,
- get $v_{\rm rad}$ to 1-2 km/s

To achieve this, spectra of SNR=10 per Å at Mg b and Ca T are needed. Such spectra can be used to get rough metallicities. UMP targets!!!

Harvest: 1.5 million halo giants across the virial volume of the MW

	120					
n		M*	<	5 x 10⁵ Msun		*]
2 2 C	100	_M*	<	10⁵ Msun		÷ -
20		M*	<	5 x 10⁴ Msun	*	
	80	Ŀ			<u> </u>	<u></u>
1	00	Ł			*	
~		F		~	۰ ۲	-
n	60	F		ô	$\stackrel{\Delta}{\frown}$	-
υ		È		*		1
ñ	40	F	*	~		-
5		È.	Δ			1
Ď	20	*	ж ♀		Aquarius simulation	-
			♦		(U. Ural, priv. comm	.)]
	0	?				
				5.0×10 ³ 1.0 Are	0×10⁴ 1.5×10⁴ 2.0 :a [deg^2])×10⁴

Halo HiRes DRS

Substructure survey strategy

Assuming that there are as many as 500 streams in the halo, we need 500 * 100 = 50,000 stars minimum to characterize the substructures chemically.

MDF survey strategy

Preselect stars to be metal-deficient ([Fe/H]<-1) using Skymapper or Gaia. Observe **all** giant stars accessible to 4MOST with V<16.

SNR requirement: 50 pixel⁻¹ (150 Å⁻¹) (2 h exposures at the faint end)

Harvest: 100,000 metal-deficient giants with detailed chemical passports (\times 100), below ([Fe/H]=-2.5 \times 10, new UMP stars.

Gaia Data Releases

Conclusions

The 4MOST Galactic (halo) DRSs can make very significant contributions to our understanding of the assembly and chemo-dynamical evolution of the Milky Way. In conjunction with Gaia astrometry, this field of science will be truly and lastingly transformed.

In 2022, we will know a great deal more about the DM distribution, the nature of the first stars and why the Milky Way looks the way it does.

On top of that...

Conclusions

The 4MOST Galactic (halo) DRSs can make very significant contributions to our understanding of the assembly and chemo-dynamical evolution of the Milky Way. In conjunction with Gaia astrometry, this field of science will be truly and lastingly transformed.

In 2022, we will know a great deal more about the DM distribution, the nature of the first stars and why the Milky Way looks the way it does.

