
The Gaia-ESO Public Spectroscopic Survey: a prototype for future ESO spectroscopic surveys

> Gerry Gilmore Co-Pl

Gaia-ESO survey (GES) overview (1/2)

- Public large spectroscopic survey with FLAMES@VLT > 300 (240+60) nights (30n/semester) over 5 (4+1) years; start 12/2011 (P88), end 9/2016 (P97)++; visitor mode \succ All populations of the MW: Halo; Bulge; Thick & Thin discs; open clusters and associations Uniform analysis: First homogeneous
 - overview of the distributions of kinematics and element abundances in the Galaxy

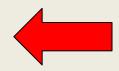
Gaia-ESO survey overview (2/2)

Giraffe for faint targets (V<19) HR03/5A/6/9B/10/14 (O/B/A) HR15N/21 (cool)

UVES for 'bright' stars (V<16.5) 520 /580 nm (warm/cool)

>10⁵ Giraffe spectra (R~16,000-25,000)
→ <u>RVs, APs, [Fe/H], [X/Fe], stellar properties</u>
>10⁴ UVES spectra (R~47,000)
→ <u>precise multi element abundances</u>
+ ESO archive exploitation/re-analysis

SCIENTIFIC BACKGROUND (1/2)


Key open issues in the formation and evolution of the MW and its component stars and stellar pops.

- The (dynamical) evolution of clusters: from birth to disruption
- Stellar evolution (ages, masses)
- Formation and evolution of the thin and thick discs
- Halo substructure, Dark Matter
- Formation and nature of the Galactic bulge

SCIENTIFIC BACKGROUND (2/2)

To comprehensively address all those questions and make a significant step forward we need the full 6-D phase space, plus stellar parameters, plus ages, plus chemistry

Survey data products

- 1D, λ calibrated, sky-subtracted spectra
- Radial and rotational velocities
- APs: T_{eff}, log g
- [Fe/H], [X/Fe] (Li, C, O, Na, Mg, ...Ni, ...Ba, Y,...)
- Average RV, [Fe/H], [X/Fe] for the clusters
- Stellar properties: e.g, accretion rates, mass loss
- Photometry used to select the targets
- Semester, annual, and final data releases
- First releases: 01/2013 and 06/2013 All with quantitative uncertainties

4Implications for 4MOST

- The Galactic community is still learning how to collaborate on big projects
- New science demands high spectral resolution, good signal-noise, wide wavelength coverage
- Analysis of stellar spectra is not a pipeline: many methods are essential → much effort
- Calibrating internal results onto a sensible scale is a very, very big challenge

1) The project management challenge

Sofia Randich (INAF-Arcetri) & Gerry Gilmore (IoA, Cambridge)

Co-PIs: Gerry Gilmore¹³⁷⁰, Sofia Randich¹³³⁶ CoIs: M. Asplund¹⁴⁹⁰, J. Binney¹⁶¹¹, P. Bonifacio¹⁵⁸⁸, J. Drew¹⁶⁶⁸, S. Feltzing¹⁴⁷³, A. Ferguson¹⁶⁴⁹, R. Jeffries¹¹³², G. Micela¹³⁴⁴, I. Negueruela⁷⁶⁰⁹, T. Prusti¹²⁷⁸, H-W. Rix¹⁴⁸⁹, A. Vallenari¹³⁴³ D. Aden¹⁴⁷³, L. Affer¹³⁴⁴, J-M. Alcala¹³⁴⁰, E. Alfaro¹³⁹², C. Allende Prieto¹³⁹³, G. Altavilla⁷⁵³⁰ J. Alves¹⁸⁹³, T. Antoja¹⁴²², F. Arenou¹⁵⁸⁸, C. Argiroffl¹⁸⁸³, A. Asensio Ramos¹³⁹³, C. Babusiaux¹⁵⁸⁸ C. Bailer-Jones¹⁴⁸⁹, L. Balaguer-Nunez¹⁸²¹, B. Barbuy¹⁸²⁸, G. Barisevicius¹³⁷⁶, D. Barrado y Navascues¹⁰⁸⁸, C. Battistini¹⁴⁷³, I. Bellas-Velidis¹⁵⁵⁵, M. Bellazzini¹³²⁹, V. Belokurov¹³⁷⁰, T. Bensby¹⁴⁷³, M. Bergemann¹⁴⁹⁰, G. Bertelli¹³⁴³, K. Biazzo¹³³⁵, O. Bienayme¹⁵⁸², J. Bland-Hawthorn²⁰⁴⁴, R. Blomme¹⁶⁵⁰, C. Boeche²¹¹², S. Bonito¹³⁴⁴, S. Boudreault¹²⁴², J. Bouvier¹⁴⁴⁹, A. Bragaglia¹³³⁷, I. Brandao¹²⁰⁰, A. Brown¹⁷¹⁶, J. de Brujine¹²⁷⁸, M. Burleigh¹²⁴⁴, J. Caballero⁸⁵⁴⁵ E. Caffau²¹¹², F. Calura¹¹⁹⁷, R. Capuzzo-Dolcetta¹⁸⁵⁷, M. Caramazza¹³⁴⁴. G. Carraro¹²⁶¹ L. Casagrande¹⁴⁹⁰, S. Casewell¹²⁴⁴, S. Chapman¹²⁷⁰, C. Chiappini¹¹³⁵, Y. Chorniy¹³⁷⁶, N. Christlieb¹⁹⁸², M. Cignoni⁷⁵³⁰, G. Cocozza⁷⁵³⁰, M. Colless¹⁰¹⁷, R. Collet¹⁴⁹⁰, M. Collins¹⁴⁸⁹, M. Corrent¹¹³²⁹, E. Covino¹³⁴⁰, D. Crnojevic¹⁶⁴⁹, M. Cropper¹²⁴², M. Cunha¹²⁰⁰, F. Damiani¹³⁴⁴,
M. David¹²³³, A. Delgado¹³⁹², S. Duffau²¹¹², S. Van Eck ¹³⁵⁸, B. Edvardsson⁶¹⁸¹, H. Enke¹¹³⁵,
K. Eriksson²⁰⁷⁹, N.W. Evans¹³⁷⁰, L. Eyer¹³⁷⁷, B. Famaey¹⁵⁸², M. Fellhauer¹⁸²⁴, I. Ferreras¹²⁴²,
F. Figueras¹⁸²¹, G. Fiorentino¹⁴²², E. Flaccomio¹³⁴⁴, C. Flynn²⁰⁴⁴, D. Folho¹²⁰⁰, E. Franciosini¹²³⁵, P. Francois¹⁵⁸⁸, A. Frasca¹³⁴¹, K. Freeman¹¹³⁹, Y. Fremat¹⁶⁵⁰, B. Gaensicke¹²⁴¹, J. Gameiro¹²⁰⁰ F. Garzon¹³⁹³, S. Geier⁵⁶⁷⁷, D. Geisler¹⁸²⁴, B. Gibson¹¹⁹⁷, A. Gomboc¹⁹⁹⁵, A. Gomez¹⁵⁸⁸ C. Gonzalez-Fernandez⁷⁶⁰⁹, J. Gonzalez Hernandez¹³⁹³, E. Grebel²¹¹², R. Greimel¹⁴²³, M. Groenewegen¹⁶⁵⁰, F. Grundahl¹³⁶⁸, M. Guarcello¹³¹², B. Gustafsson²⁰⁷⁹, P. Hadrava¹¹¹⁶, D. Hadzidimitriou¹⁵⁵⁹, N. Hambly¹⁶⁴⁹, P. Hammersley¹²⁵⁸, C. Hansen²¹¹², M. Haywood¹⁵⁸⁸, U. Heber⁵⁸⁷⁷, U. Heiter⁶¹⁸¹, A. Helmi¹⁴²², G. Hensler¹⁸⁹³, A. Herrero¹³⁹³, V. Hill¹⁵⁹¹, S. Hodgkin¹³⁷⁰, N. Huelamo⁸⁵⁴⁵, A. Huxor²¹¹², R. Ibata¹⁵⁸², M. Irwin¹³⁷⁰, R. Jackson¹¹³², R. de Jong¹¹³⁵, P. Jonker¹⁶⁶⁰, S. Jordan²¹¹², C. Jordi¹⁸²¹, A. Jorissen¹³⁵⁸, D. Katz¹⁵⁸⁸, D. Kawata¹²⁴² S. Keller¹¹³⁹, N. Kharchenko¹¹³⁵, R. Klement¹⁴⁸⁹, A. Klutsch¹⁸⁰³, J. Knude¹⁹⁶⁶, A. Koch¹²⁴⁴ O. Kochukhov⁶¹⁸¹, M. Kontizas¹⁵⁶⁰, S. Koposov¹³⁷⁰, A. Korn⁶¹⁸¹, P. Koubsky¹¹¹⁶, A. Lanzafame¹⁸⁷⁴ R. Lallement¹⁵⁸⁸, P. de Laverny¹⁵⁹¹, F. van Leeuwen¹³⁷⁰, B. Lemasle¹⁴²², G. Lewis²⁰⁴⁴, K. Lind¹⁴⁹⁰, H.P.E. Lindstrom¹⁹⁶⁶, J. Lopez santiago¹⁸⁰³, P. Lucas¹⁶⁸⁸, H. Ludwig²¹¹², T. Lueftinger¹⁸⁹³ L. Magrini¹³³⁵, J. Maiz Apellaniz¹³⁹², J. Maldonado¹⁸⁰³, G. Marconi¹²⁶¹, G. Matijevic¹⁹⁹⁵, R. McMahon¹³⁷⁰, S. Messina¹³⁴¹, M. Meyer¹³⁷⁷, A. Miglio¹³⁵⁹, S. Mikolaitis¹³⁷⁶, I. Minchev¹¹³⁵, D. Minniti¹⁸⁰¹, A. Moitinho⁸⁸⁴⁸, N. Molawi¹⁵⁸³, Y. Momany¹²⁶¹, L. Monaco¹²⁶¹, M. Montalto¹²⁰⁰ M.J. Monteiro¹²⁰⁰, R. Monier⁵⁶⁹⁵, D. Montes¹⁸⁰³, A. Mora¹³⁵⁰, E. Moraux¹⁴⁴⁹, T. Morel¹³⁵⁹, A. Morino¹⁴⁹⁰, N. Mowlavi¹⁵⁸³, A. Mucciarelli⁷⁵³⁰, U. Munari¹³⁴³, R. Napiwotzki¹⁶⁶⁸, N. Nardetto¹⁸²⁴, T. Naylor¹¹³⁰, G. Nelemans¹⁶³⁸, S. Okamoto¹⁶¹⁶, S. Ortolani⁶³¹¹, G. Pace¹²⁰⁰, F. Palla¹³³⁵, J. Palous¹¹¹⁶, E. Pancino¹³³⁷, R. Parker¹³⁷⁷, E. Paunzen¹⁸⁹³, J. Penarrubia¹⁸²⁸, I. Pillitteri¹³¹², G. Piotto¹³⁴³, H. Posbic¹⁵⁸⁸, L. Prisinzano¹³⁴⁴, E. Puzeras¹³⁷⁶, A. Quirrenbach²¹¹², S. Ragaini⁷⁵³⁰, D. Ramano¹³³⁷, J. Read¹³⁷⁷, M. Read¹⁶⁴⁹, A. Recio-Blanco¹⁵⁹¹, C. Reyles¹⁵⁹² N. Robichon¹⁵⁸⁸, A. Robin¹⁵⁹², S. Roeser²¹¹², F. Royer¹⁵⁸⁸, G. Ruchti¹⁴⁹⁰, A. Ruzicka¹¹¹⁶, S. Ryan¹⁶⁶⁸, N. Ryde¹⁴⁷³, G. Sacco¹⁶⁴⁵, N. Santos¹²⁰⁰, J. Sanz Forcada¹⁴⁵⁶, L.M. Sarro Baro⁵⁶⁸⁸, L. Sbordone¹¹³⁹, E. Schilbach²¹¹², S. Schmeja²¹¹², O. Schnurr¹¹³⁵, R. Schoenrich¹⁴⁹⁰, R-D. Scholz¹¹³⁵, G. Seabroke¹²⁴², S. Sharma²⁰⁴⁴, G. De Silva¹⁰¹⁷, R. Smiljanic¹²⁵⁸, M. Smith¹⁶¹⁶ E. Solano⁸⁵⁴⁵, C. Soubiran¹⁵⁹², S. Sousa¹²⁰⁰, A. Spagna¹³⁴⁶, M. Steffen¹¹³⁵, M. Steinmetz¹¹³⁵ B. Stelzer¹³⁴⁴, E. Stempels⁶¹⁸¹, H. Tabernero¹⁸⁰³, G. Tautvaisiene¹³⁷⁶, F. Thevenin¹⁵⁹¹, J. Torra¹⁸²¹, M. Tosi¹³³⁷, E. Tolstoy¹⁴²², C. Turon¹⁵⁸⁸, M. Walker¹³¹², N. Walton¹³⁷⁰, J. Wambsganss²¹¹² C. Worley¹⁵⁹¹, K. Venn²⁰⁶¹, J. Vink¹¹¹¹, R. Wyse¹⁴¹⁹, S. Zaggia¹³⁴³, W. Zeilinger¹⁸⁹³, M. Zoccali¹⁸⁰¹, J. Zorec¹³⁶¹, D. Zucker¹⁴⁷⁷, T. Zwitter¹⁹⁹⁵

The project management challenge All going in the same direction...

1) The project management challenge it isn't what you first think...

1649

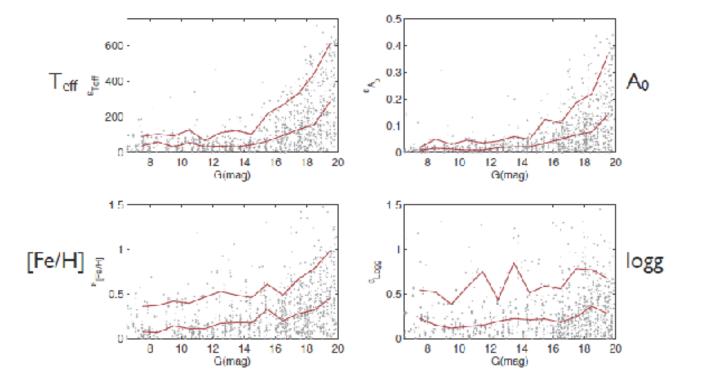
The daydreams of cat herders

1) The project management challenge it can be done....

1649

Gaia will have done the easy bit

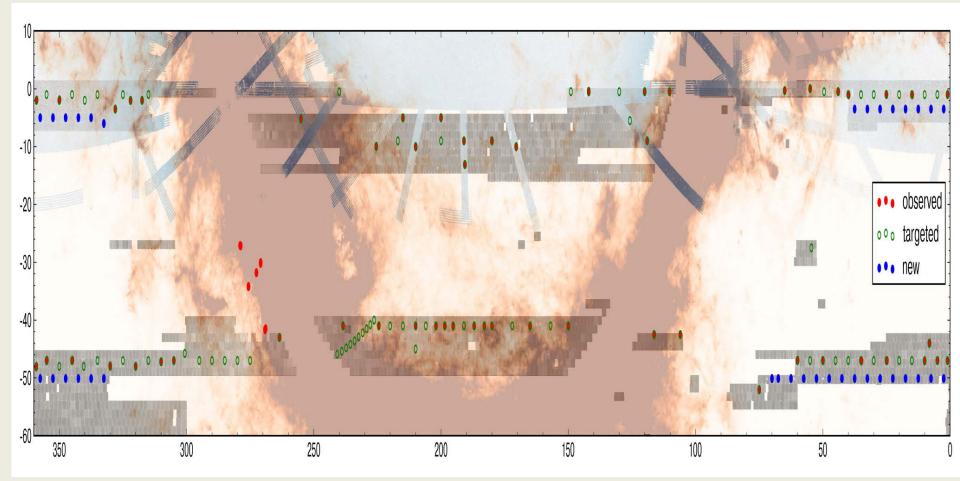
Alerts – as soon as we can, within year one, on to the end

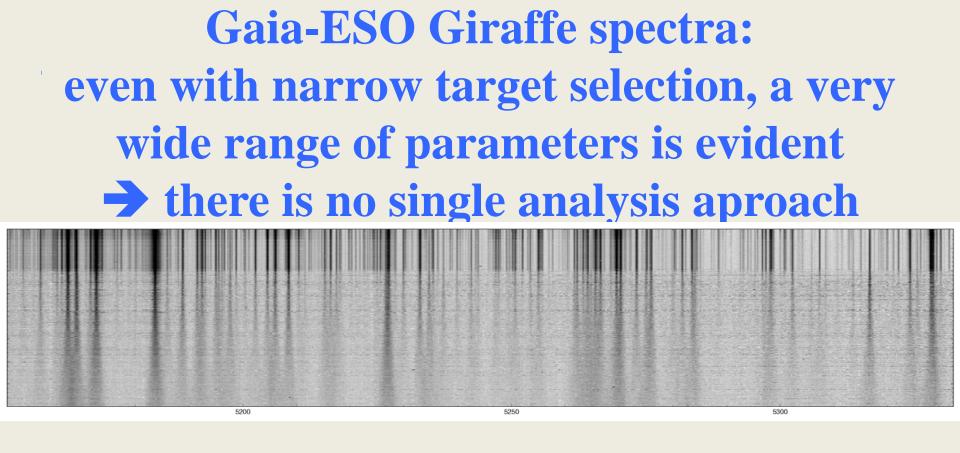


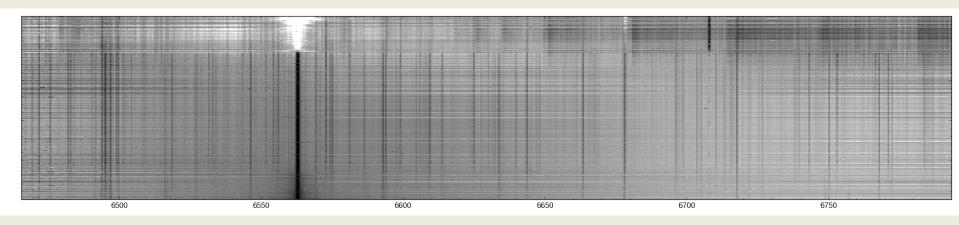
The first-pass determination of astrophysical parameters will come from Gaia – New science means RVs, and good elemental abundances → HIGH RESOLUTION

2. Science performances

Stellar parameters


50% and 90% bounds shown


Courtesy of C. Bailer-Jones


More in http://www.mpia.de/Gaia

Gaia will produce astrometry, photometry, spectra, spectrophotometry, RVs, periods for variables, orbits for NEOs, abundances, astrophysical parameters, Av,....

Gaia-ESO fields targeted Paranal often has north wind limits.. Blue-arm science targets in high-extinction southern areas are essential...

Gaia-ESO Survey philosophy

- some large stellar surveys have struggled to deliver good results
- "spend \$20M on data acquisition, then find a student..."
- Determining reliable calibrated element abundances from a wide range of stellar types is a big challenge: hot/warm/cool/metal-rich/metal-poor...
- dominates effort, will continue to dominate effort
- Gaia-ESO involves all European & Australian expert teams
- **→** continuity, experience, complementarity.
- No "wheel re-invention".
- All spectra analysed in several ways we do not try for one "pipeline", but use all available proven methods
- → different methods are essential for different stellar parameter ranges.
- Multi-Analyses can also provide a range in complexity eg, NLTE.
- Providing the whole range of analysis outputs quantifies both random and systematic (method-dependent) effects

Gaia-ESO Survey philosophy

- sample unbiassed MDFs
- → undersample rare and wings
- Providing the whole range of analysis outputs quantifies both random and systematic effects
- Some science wants a simple "answer", other science analyses the details
- Serious calibration effort is essential to determine a "best" value for each star, as well as the method-dependent range
- Gaia-ESO uses Open Clusters to link hot, warm, cool, parameter and abundance scales, with substantial special observational effort
- Calibration is expensive, and complex: eg super-solar
- Calibration needs planning.

conclusion

- Gaia-ESO is your pathfinder:
- we will make a good job!

 The Gaia-ESO experience provides valuable experience for 4MOST science and data processing planning