Full-sky surveys with WEAVE and 4MOST in the Gaia era

S.C. Trager (WEAVE PS + NL PI) with thanks to the WEAVE+4MOST science teams

university of groningen

faculty of mathematics and natural sciences

New survey frontiers from new survey instruments

- Gaia: Astrometry at microarcsecond precision
 - The history of the Milky Way
- SKA Pathfinders:
 - The history of star formation and AGN in the Universe
 - HI at cosmological distances
 - Precision cosmology
- eROSITA
 - This history of X-ray-selected AGN and clusters in Universe
 - Precision cosmology

rontiers from hstruments

cond precision

The history of star formation and AGN in the Universe

- HI at cosmological distances
- Precision cosmology
- eROSITA
 - This history of X-ray-selected AGN and clusters in Universe
 - Precision cosmology

/ university of groningen

faculty of mathematics and natural sciences

rontiers from hstruments

cond precision

- THE HISTORY
- HI at cosmo
- Precision contract
- eROSITA
 - This history
 - Precision collection

 university of groningen

faculty of mathematics and natural sciences

rontiers f hstrumen

cond precision

- The history
- HI at cosmo
- Precision contract
- eROSITA
 - This history
 - Precision collection

university of groningen

faculty of mathematics and natural sciences

- eROSITA
 - This history
 - Precision c

university of groningen

HPS LaserJob

iabg

faculty of mathematics and natural sciences

New survey frontiers from new survey instruments

- All of these are, by themselves, incomplete!
 - Gaia: no radial velocities at V>17 mag (only 15% of stars), no abundances at V>12 mag (only 0.1% of stars)
 - LOFAR + ASKAP+MeerKAT continuum surveys: just continuum, no redshifts
 - Apertif + ASKAP+MeerKAT HI surveys: just neutral gas kinematics, limited (SDSS) or no stellar info
 - eROSITA: just X-ray fluxes

university of groningen

Galactic archaeology surveys: exploiting Gaia's scientific return

v university of groningen

faculty of mathematics and natural sciences

Galactic archaeology: How did our Galaxy form?

- The Galactic halo:
 - how was it formed? accreted or in-situ?
 - what is the total mass of the Milky Way?
 - what is the shape of the Milky Way's gravitational potential?
 - how much substructure does the halo have?
 - where are the most metal-poor stars in the Milky Way, and what are their properties?

Galactic archaeology: How did our Galaxy form?

- The Galactic disk(s):
 - how many disks are there really? what are their relationships with the bulge, the halo, and each other?
 - did they form through accretion or secular processes
 is radial migration important?
 - what is the metallicity gradient in the disk(s)?

Galactic archaeology: How did our Galaxy form?

- The Galactic bulge and bar:
 - when and how did the bulge form?
 - how is the bar related to the disk(s) and the bulge?

university of groningen

faculty of mathematics and natural sciences

The need for full-sky Galactic surveys

- No single instrument on the ground can survey all of the Galactic populations
 - The Galaxy is asymmetric when seen from the ground
- Southern Hemisphere facilities like 4MOST are excellently positioned to get the Galactic bulge, bar, and inner disk, as well as some of the Galactic halo
- Northern Hemisphere facilities like WEAVE get the outer disk and (more of) the halo

faculty of mathematics and natural sciences

The Galactic halo

- The halo records the formation history of the MW
 - at large distances, mixing timescales are long: ancient substructure readily discernible with all-sky surveys
 - outer halo (>20 kpc): streams detected as overdensities
 - inner halo (10-20 kpc): need chemodynamics

faculty of mathematics and natural sciences

university of

groningen

The Galactic halo

- The halo is intrinsically asymmetric due to its formation process
 - need to observe **both** (equatorial) hemispheres to get full picture of halo formation!

 university of groningen

faculty of mathematics and natural sciences

The Galactic disks

- Disk formation and evolution appears to be a complex interplay of multiple processes, such as
 - smooth baryon accretion
 - secular evolution of clumpy, turbulent gas disks
 - sporadic satellite accretion
 - spiral-driven radial stellar migration
 - bar-halo and bar-spiral angular momentum coupling

university of groningen

The Galactic disks

- The Galactic disks are not (severely) asymmetric, but the formation processes likely vary with radius
 - The inner disk best seen from the South is likely dominated by in-situ star formation and secular processes
 - The outer disk best seen from the North is likely a combination of accreted populations on top of in-situ star formation, with secular processes playing a complicated role
 - for example, may be easier to trace radial migration in outer disk (Roskar et al. 2008, 2010)

university of groningen

faculty of mathematics and natural sciences

The Galactic bulge and bar

- The bulge may be symmetric, but it appears that the bar is complex, with a distinct X-shape
- How does this come about? What are the populations of these components – their compositions and kinematics? How did they form?
- As already discussed, this is best tackled from the South

Chemical labeling vs kinematics in the Milky Way

- Of course, all of these questions should be answered using all of the tools at our disposal
 - Dynamics inferred from kinematics: phase-space information at the ~2 km s⁻¹ level
 - Chemical composition of the populations: abundances at the [X/H]~±0.1 dex level

 university of groningen

faculty of mathematics and natural sciences

Chemical labeling vs kinematics in the Milky Way

- Dynamics inferred from kinematics: phase-space information at the ~2 km s⁻¹ level
 - R≥5000 + Gaia parallaxes and proper motions
 - V>17: need 4MOST and WEAVE
- Chemical compositions: abundances at the $[X/H] \sim \pm 0.1$ dex level
 - R≥20000
 - V>12: need 4MOST and WEAVE (and HERMES at bright end)

Galactic archaeology survey strategy: WEAVE

	log(N)	Area (deg ²)	R	Depth
Halo	6	6500	5000	V≤20
Disks	6.7	2000	5000	V≤20
Chemical Iabeling	4.7 (halo) 5.7 (disk)	2500 2000	20000	V≤17
Open clusters	4.7	150	20000	V≤17
Total survey time: 4 years				

@ 7 hours/night

university of groningen

faculty of mathematics and natural sciences

WEAVE's additional Galactic Archaeology science cases

- Hunting the rarest stellar phases
- Dating Galactic populations with white dwarfs
- Pulsating variable stars
- Massive (blue) stars in the MW and Local Group

- IMF of low-mass stars and sub-stellar objects
- Chemodynamics of MW dwarf satellites
- Ultra-faint dwarfs

/ university of
groningen

faculty of mathematics and natural sciences

university of groningen

faculty of mathematics and natural sciences

8.6 ''

WEAVE characteristics

Telescope, diameter	WHT, 4.2m	
Field of view	2°	
Number of fibers	1000	
Fiber size	1.3"	
Number of small IFUs, size	~25, 9"x12" (1.3" spaxels)	
LIFU size	~2'x1.5' (2.6" spaxels)	
Low-resolution mode resolution	4300–7200	
Low-resolution mode wavelength coverage (Å)	3660–9840	
High-resolution mode resolution	18560-21375	
High-resolution mode wavelength coverage (Å)	4040–4650, 4730–5450 5950–6850	

WEAVE throughput

WEAVE organization

- PI: Gavin Dalton (Oxford/RAL)
- Deputy PI: Dave Carter (LJMU)
- Project Scientist & Dutch PI: SCT (Kapteyn)
- French PI: Piercarlo Bonifacio
- Spain PI: J. Alfonso Aguirre Lopez
- Project Manager: DC Abrams (ING)

- Systems Engineer: Mike McIntosh (UKATC)
- Instrument Scientist: Chris
 Evans (UKATC)
- Contributions from RAL, UKATC, LJMU, NOVA, GEPI, ING, Cambridge
- Financial contributions (expected) from UK, NL, E, F

WEAVE status

- Full WEAVE PDR in 2013 Q1 (March)
 - Prime focus corrector optics PDR successful on 4 November 2012
- Funding in progress
 - Positive funding outlook in NL, UK, E (+ ING and inkind contributions from F)
 - NL: secured M€2, M€1,4 requested and under review

 university of groningen

Conclusions

- A complete understanding of our own Galaxy requires full-sky coverage of its kinematics and chemical composition
 - The requires moderate resolution wide-field spectroscopic facilities in both hemispheres

 university of groningen

faculty of mathematics and natural sciences

Conclusions

- 4MOST on ESO's VISTA telescope in the South and WEAVE on the WHT in the North are *ideal* for such fullsky surveys
 - Complementary surveys on nearly identical instrumentation
 - multiplex and field size only significant differences!

university of groningen

Other survey complementarities

- SKA pathfinder follow-up surveys
 - HI-driven galaxy evolution surveys
 - stellar and ionized gas content at cosmological distances
 - Continuum surveys
 - AGN and SF evolution
 - Finding the rarest objects: e.g., z~6–7 AGN and radio-selected galaxy clusters

university of groningen

Other survey complementarities

- Full-sky eROSITA follow-up
 - Finding the rarest objects: high-z AGN and the richest clusters at z<1</p>
- Full-sky cosmology surveys

 university of groningen

faculty of mathematics and natural sciences