BOSS & eBOSS (on behalf of many SDSS colleagues)

Bob Nichol (ICG Portsmouth)

Building on the legacy of SDSS

Still a highly competitive wide-field spectroscopic capability

> At least one paper a day!

SDSS-III

- BOSS
- SEGUE-II
- APOGEE
- MARVELS

Funded for operation from 2008 to 2014

BOSS in a nutshell

8,000 deg² footprint in Spring 3,000 deg² footprint in Fall

(Eisenstein et al. 2011)

Upgraded spectrographs (with better throughput)
1000x 2-arcsec fibers in cartridges
Increase wavelength range to 3600-10,000A (R=1500-2600)

Finished ~3,000 deg² southern imaging in Fall 2008.
Released as part of DR8, published in ApJS (2011).

Currently doing only spectroscopy
 1.5 million galaxies, i<19.9, z<0.8, over 10,000 deg²
 150,000 QSOs, g<22, 2.3<z<3, over 8,000 deg²

Blanton

BOSS is over half done!

Over 1500 plates done (july 2012), or 1.515M spectra! Only 2% of time lost to problems in 2011/12 season Lower sky brightness

BAO at high z (Busca et al. 2012)

BOSS Galaxies (Anderson et al. 2012)

Still things to learn

Other Cosmologies (Reid et al. 2012)

Table 1. The median and 68.3 per cent confidence level intervals on parameters $b\sigma_8$, $f\sigma_8$, absolute distance scale D_V (Eqn. 15), Alcock-Paczynski parameter F (Eqn. 16), as well as derived parameters, comoving angular diameter distance $((1 + z_{eff})D_A)$ and expansion rate (H). To obtain these constraints, we marginalize over σ_{FoG}^2 and power spectrum shape parameters $\vec{p}_s = \{\Omega_b h^2, \Omega_c h^2, n_s\}$ for Models 2-4, as described in Section 5.2 We interpret our measurements at the effective redshift of our galaxy sample, $z_{eff} = 0.57$.

Ancillary Program (Dawson et al. 2012)

High impact for relatively small fiber allocations

- As powerful as SNLS without all the SN follow-up
- Lots of community support

"Stage VI" experiments

We have a decade of surveys:

- eBOSS (2014)
- DESpec (2018)
- BigBOSS (2018)
- WEAVE (2018)
- SuMIRE (2018)
- Euclid (2019)
- LSST (2020)
- WFIRST (2022)
- SKA (2023)

"Stage VI" experiments

We have a decade of surveys:

- ▶ eBOSS (2014) 4 years to exploit SDSS wide-field!
- DESpec (2018)
- BigBOSS (2018)
- WEAVE (2018)
- SuMIRE (2018)
- Euclid (2019)
- LSST (2020)
- WFIRST (2022)
- SKA (2023)

e-BOSS: Extending BOSS The novel Sloan legacy cosmological survey

Selected for AS3 end 2011 - survey will start mid 2014

J.-P. Kneib, F.Abdalla, J.Annis, E.Aubourg, D. Bacon, S. Bailey, G. Bernstein, A. Bolton, N. Brandt, J. Brownstein, Y. Cai, F. Castander, J. Cepa, J. Comparat, R. Croft, F. Courbin, J.-G. Cuby, S. Das, L. Da Costa, A. Dey, A. Ealet, S. Escoffier, J. Frieman, S. Ho,, R. Kron, O. Lahav, J.-M. Le Goff, O. Le Fèvre, M. Limousin, C. Magneville, M.
Maia, M. Makler, G. Meylan, P. McDonald,, N. Mostek, A. Myers, J. Newman, B. Nichol, N. Padmanabhan, N. Palanque-Delabrouille, J. Peacock, W. Percival, C. Peroux, P. Petitjean, M. Pieri, F. Prada, J. Rich, E. Rollinde, E. Rozo, E. Rykoff, V. Ruhlmann-Kleider, M. Sako, B. Santiago, C. Schimd, D. Schlegel, D. Schneider, U. Seljak, A. Slosar, M. Takada, C. Tao, L. Tasca, R. Tojeiro, L. Verde, M. White, C. Yèche, and I. Zehavi

66 co-ls, from 29 institutes signed the proposal growing interest - you are welcome to join!

Talk to Mike Blanton!

eBOSS: Measuring the Expansion History of the Universe between 7 and 11 billions of Light-Year with Galaxies & Quasars

e-BOSS Summary

- a new cosmology project that pushes the reach of the Sloan Telescope to map the LSS beyond z=0.6 (<u>BAO, RSD</u>):
 - probe 0.6<z<~I.6 with Emission-Line-Galaxies (ELG)
 - probe 0.6<z<0.8 with Luminous Red Galaxies (LRG)
 - probe I < z < ~ 2.2 with QSOs
 - increase the sample of z>2.2 QSOs for Ly-forest survey
 - accomodate TDSS (Variability) and SPIDERS (eROSITA) targets
- provide new competitive BAO+RSD+WL Dark Energy constraints in the footprint of new <u>WL/cluster</u> DE survey [e.g. DES, KIDS, Scube]:
 - double the signal in the Ly-alpha forest compared to BOSS
 - a factor of \sim 2+ improvement in DETF-FOM for BAO compared to BOSS.
 - develop synergy with the new WL and cluster DE probes.
- provide a wealth of ancillary sciences:
 - Galaxy Evolution and Quasar/IGM sciences
 - Lensing (photo-z calibration and tracing clusters/groups, strong lensing)
 - Multi-wavelength science using synergy with other very wide field survey

Kneib

e-BOSS numbers

- Survey Strategy:
 - ~2,500 sq.deg.
 - survey area visited 3 times over the project (finish before BigBOSS starts), ~Ih exposures (similar to BOSS)
 - ~400k ELGs
 - ~200k LRGs (at z>0.6)
 - ~350k QSOs (100k at z>2.2)
 - ~100k targets from TDSS & SPIDERS (variability+AGN)
 - repeat observations on some targets (Ly-alpha QSOs, hi-z LRGs, timevariability spectroscopy), and observation of close objects closer than the fiber collision limit (galaxy pairs, galaxy members in a cluster, galaxyquasar close pairs ...) offer new science topics!

Euclid

SURVEYS								
	Area (deg2)		Description					
Wide Survey	15,000 (required)		Step and stare with 4 dither pointings per step.					
	20,000 (goal)	20,000 (goal)						
Deep Survey	40		In at least 2 patches of $> 10 \text{ deg}^2$					
	2 magnitudes deeper than wide survey							
		PAYLO	4D					
Telescope	1.2 m Korsch, 3 mirror anastigmat, f=24.5 m							
Instrument	VIS	NISP						
Field-of-View	$0.787 \times 0.709 \text{ deg}^2$		0.763×0.722 deg ²					
Capability	Visual Imaging	NIR	Imaging Photom	NIR Spectroscopy				
Wavelength range	550–900 nm	Y (920-	J (1146-1372	Н (1372-	1100-2000 nm			
		1146nm),	nm)	2000nm)				
Sensitivity	24.5 mag	24 mag	24 mag	24 mag	$3 \ 10^{-16} \text{ erg cm-} 2 \text{ s-} 1$			
	10σ extended source	5σ point	5σ point	5σ point	3.5σ unresolved line			
		source	source	source	flux			
Detector	26			16				
Detector	36 arrays		16 arrays					
Technology	4K×4K CCD		2K×2k NIR sensitive HgCd1e detectors					
Pixel Size	0.1 arcsec		0.3 arcsec 0.3 arcsec					
Spectral resolution			R=250		R=250			
SPACECRAFT								
Launcher	Soyuz S1-2.1 B from Kourou							
Orbit	Large Sun-Earth Lagrange point 2 (SEL2), free insertion orbit							
Pointing	Pointing 25 mas relative pointing error over one dither duration							
	30 arcsec absolute pointing error							
Observation mode	Step and stare, 4 dither frames per field, VIS and NISP common $FoV = 0.54 \text{ deg}^2$							
Lifetime	7 years							
Operations	4 hours per day contact, more than one ground station to cope with seasonal visibility							

Science summary

- Two primary probes: new physics and systematics
- Weak lensing and galaxy clustering

	Modified Gravity	Dark Matter	Initial Conditions	Dark Energy		
Parameter	y	m√eV	f _{NL}	w_p	Wa	FoM
Euclid Primary	0.010	0.027	5.5	0.015	0.150	430
Euclid All	0.009	0.020	2.0	0.013	0.048	1540
Euclid+Planck	0.007	0.019	2.0	0.007	0.035	4020
Current	0.200	0.580	100	0.100	1.500	~10
Improvement Factor	30	30	50	>10	>50	>300

Euclid clustering measurements

What is MaNGA?

- One of three approved "After-SDSS-III" (AS3) surveys to begin on the Sloan 2.5m in September 2014
- AS3 = MaNGA, eBOSS, APOGEE-2
- MaNGA exploits the existing BOSS instrument (high throughput, pipeline)

- MaNGA will bundle BOSS fibers to create 15-20 IFUs of various sizes
- IFU survey of ~10k nearby galaxies

From Kevin Bundy

MaNGA Key Questions:

Life	 How does gas accretion drive the growth of galaxy disks? What are the relative roles of stellar accretion, major mergers, and instabilities in forming galactic bulges?
Death	3. What quenches star formation?4. How do external forces affect star formation in groups and clusters?
Birth	5. How was angular momentum distributed among baryonic and non-baryonic components as the galaxy formed?6. How do baryons and stars trace and influence the shape of dark matter halos?7. Does galaxy growth at low and high redshifts proceed in the same way?

Monday, September 17, 12

Summary

BOSS is over half way to Stage III

- LyAF BAO is detected
- LCDM + GR survives at 10% level
- Suite of ancillary programmes (Dawson et al.)
- Push now towards Stage VI
 - eBOSS push to high redshift (greater volume) and better LyAF measurements – fill the gap
 - Imaging + eBOSS could deliver something quite unique by 2018 – novel tests of GR

The Dark Energy Survey

- Survey project using 4 complementary techniques:
 - I. Cluster Counts II. Weak Lensing III. Large-scale Structure IV. Supernovae
- Multiband surveys:
 - 5000 deg² *grizY* 1-2% photometry 30 deg² repeat (SNe)
- Build new 3 deg² FOV camera and Data management system Survey 2012-2017 (525 nights)

Blanco 4-meter at CTIO

The DES Collaboration

Fermilab

University of Illinois at Urbana-Champaign/NCSA University of Chicago Over 120 members Lawrence Berkeley National Lab plus students & NOAO/CTIO postdocs **DES Spain Consortium DES United Kingdom Consortium** Funding: DOE, NSF; UK: STFC, SRIF; University of Michigan **Spain Ministry of Ohio State University** University of Pennsylvania Science, Brazil: **DES Brazil Consortium** FINEP, Ministry of **Argonne National Laboratory** Science, FAPERJ; Germany: Excellence SLAC-Stanford-Santa Cruz Consortium Cluster; collaborating Universitats-Sternwarte Munchen institutions Texas A&M University plus Associate members at: Brookhaven National Lab, U. North Dakota, Paris, Taiwan

Sept 12th 2012 first light November 9th Dedication December 1st survey ops?

DECam CCDs

DESpec

 4000 fibre spectrograph taking 10 million galaxy spectra on the DES footprint over ~350 nights, starting 2017-18.

Blanco 4m telescope, CTIO, 3.8deg² FoV great seeing 0.65", many usable nights, 80%
 → fast & cheap survey

- DES provides target list, infrastructure
 & much more. Build on the DES legacy, Stage III -> Stage IV
- Spectral range 600-1000nm, R=3300 (red end)
- Hemisphere synergy with LSST, extend to ~15,000 deg2

DESpec White Paper

6

DARK ENERGY

SURVEY