

4MOST eROSITA AGN DRS

Andrea Merloni (MPE)

wvoges 7-Jan-97

eROSITA surveys in context

Merloni - eROSITA AGN - 4MOST Meeting, 11/2012

~3M eROSITA AGN

- First 2-10 keV all-sky survey after HEAO-1 ($F_{lim} \sim 10^{-13}$ cgs full survey)
- AGN in Large-Scale Structure (clustering vs. z, L)
 - AGN ACF, AGN/Clusters CCF, AGN/Gal CCF
- $N(>S_X) [deg^{-2}]$ • Obscured vs. Unobscured AGN at $z\sim 2$
- High-z (z>4) AGN
- Tidal disruption events
- AGN variability over >4 years
- Binary SMBH?

Source density: 15-250/sqdeg

See talks by T. Boller, M. Krumpe, A. Klodzig

~3M eROSITA AGN

Merloni - eROSITA AGN - 4MOST Meeting, 11/2012

MPE

eROSITA power for AGN physics

- Stacked AGN "templates" vs. L-z
- X-ray Baldwin effect: Narrow /Broad Iron K α emission line vs. L_X
- High L/L_{edd}; QSO feedback via disk winds:
 - For $\log L_X > 45$ @z~1 >10⁶ counts in 4-20 keV (rest frame)
 - For $\log L_X > 45$ @z~3 >10⁶ counts in 2-8 keV (rest frame)

Make every X-ray photon count!

State of the art: XMM-COSMOS A complete, X-ray selected, AGN sample

- 1555 X-ray selected AGN (XMM; f_{lim}~ **5×10⁻¹⁶**[0.5-2]; **3×10⁻¹⁵**[2-10])
- 100% redshift complete (54% specz; 46% photoz)
- 602 Unobscured (71% specz; 29% photoz)
- 953 Obscured (42% specz; 58% photoz)
- Parent sample of ~200k IRAC galaxies (photoz, M_{*}; Ilbert et al. 2010)

MPE

AGN obscuration redshift evolution

Using the redshift info, and the observed count rates, we extracted complete, **rest-frame 2-10 keV selected** sample ($f_{2-10} > 1.8 \times 10^{-15}$; no N_H-z bias; 1030 X-ray selected AGN)

Merloni - eROSITA AGN - 4MOST Meeting, 11/2012

Merloni et al., in prep.

There appears to be a break consistent with ~Eddington limit

Bongiorno et al., 2012

Bongiorno et al., 2012

An AGN mock catalog (for 4MOST)

AGN 4MOST SWP: Banerji (IoA), Boller (MPE), Bongiorno (INAF-OAR), **Brusa** (MPE), Krumpe (ESO), Lamer (AIP), Mainieri (ESO), McMahon (IoA), Merloni (MPE), Nandra (MPE), Salvato (MPE), Schwope (AIP), Wisotski (AIP)

- 1. Start from eROSITA exposure map
- 2. Use Galactic extinction map
- 3. Randomly distributed sources in RA and DEC
- 4. Fit AGN 0.5-2 keV LogN-LogS
- 5. Use X-ray background synthesis models of AGN LogN-LogS (fits luminosity function, N_H distribution vs. L and z, etc.)
- 6. Empirical X-ray to optical (X/O) ratio distribution (as a function of L)
- 7. Spectral type assignment
- 8. Spectral templates

Redshift and Lx distributions

Based on Gilli et al. 2007 XRB synthesis model, and the Hasinger et al. 2005 XLF

Obscured AGN fraction

Based on XMM-COSMOS catalog of fully identified AGN, Brusa et al. 2010; Salvato et al. 2009

X-ray-to-optical ratios

Based on XMM-COSMOS catalog of fully identified AGN, Brusa et al. 2010; Salvato et al. 2009

Spectral templates

AGN: Can we follow them up?

Merloni - eROSITA AGN - 4MOST Meeting, 11/2012

[AGN: radio counterparts]

From the observed probability distribution of L_{1.4 GHz} as a function of X -ray luminosity and redshift (La Franca et al. 2010)

About ¹/₂ of eROSITA AGN will be fainter than 10 µJy

eRASS:1=6 months survey ($F_{0.5-2}$ _{keV}>4 × 10⁻¹⁴ erg/s/cm²)

eRASS:8=4 years survey ($F_{0.5-2 \text{ keV}} > 1 \times 10^{-14} \text{ erg/s/cm}^2$)

Simulated optical (r_{AB} band) sky

Merloni - eROSITA AGN - 4MOST Meeting, 11/2012

FIGURE of MERIT

FoM=0.5 correspond to 75% completeness (defined, in genral terms, as $N_{completed}/N_{input}$), and FoM=1 corresponds to 90% completeness.

Run 5 (wide) simulation analysis

Π tyl

☐ ty2 ☐ Ell

R-band magn distribution of the unsuccessful objects

In each panel, type 1 AGN, type 2 AGN and elliptical galaxies templates are shown with blue, red and green lines, respectively.

Run 5 (wide) simulation analysis

R-band magn distribution of the unsuccessful objects

In each panel, type 1 AGN, type 2 AGN and elliptical galaxies templates are shown with blue, red and green lines, respectively.

In each panel, type 1 AGN, type 2 AGN and elliptical galaxies templates are shown with blue, red and green lines, respectively.

Run 5 (wide) simulation analysis

Sky density of unobserved targets (sum of FAILURE 1 and 2)

Image A. Nishizawa (IPMU), AM

BOSS SPIDERS pilot survey in the XMM-LSS

(1) Limiting flux 0.5-2 keV [erg/s/cm²]	(2) Total #/dens. [deg ⁻²]	(3) Targetable 17 <g<22.5< th=""><th>(4) Bright g<17</th><th>(5) Too faint (g>22.5 or unid)</th><th>(6) Targeted in ancillary + BOSS (sampling rate)</th><th>(7) Good_z (success rate)</th><th>(8) FoM (=Good_z/Total/sampling) /FoM*dens. [deg⁻²]</th></g<22.5<>	(4) Bright g<17	(5) Too faint (g>22.5 or unid)	(6) Targeted in ancillary + BOSS (sampling rate)	(7) Good_z (success rate)	(8) FoM (=Good_z/Total/sampling) /FoM*dens. [deg ⁻²]
6e-15	1159/166	752 (65%)	38 (3%)	369 (32%)	503+24 (0.70)	424 (80%)	0.52/86
1e-14	638/91	475 (75%)	26 (4%)	137 (21%)	324 (0.68)	280 (86%)	0.64/58
2e-14	210/30	175 (83%)	17 (8%)	18 (9%)	113 (0.65)	107 (95%)	0.78/23
4e-14	74/11	61 (82%)	9 (12%)	5 (7%)	42 (0.69)	40 (95%)	0.78/8.6

(1)= limiting flux in the soft X-ray band (0.5-2 keV) from A. Georgakakis's catalog in XMM-LSS

(2)= Total number of sources in the field/source density (deg⁻²)

(3)= # of sources that can be targeted by BOSS (i.e. with a reliably identified optical counterpart in SDSS, with 17<g<22.5)

(4)= # of sources that cannot be targeted by BOSS because too bright (mostly stars)

(5)= # number of sources that cannot be targeted by BOSS because without counterpart, or too faint

(6)= # number of sources actually targeted by BOSS (both in BOSS main and in SPIDERS pilot, TBC). Here "Sampling rate" is the ratio Targeted/Targetable (column 6/column 3)

(7)= # number of sources with ZWARNING=0 (good redshift measurements)

(8)= Figure of Merit=(good_z/total)*(1/sampling). This should approximate the true completeness of the redshift determination. FoM*n is the number density of a sample of x-ray AGN (per deg^2) for which we can obtain redhisft if sampling rate=100%

- A highly complete spectroscopically identified sample of ~10⁶ X-ray selected AGN will be a revolution in the study of black holes
- 4MOST has the potential to fulfill this goal
- With a surface density <100/deg², we should aim at the highest possible completeness (simple FoM):
 - high priority in the extragalactic sky
- Wider survey strategy clearly preferred

UΗ

eberhard karls UNIVERSITÄT TÜBINGEN

КИ

Thank you!

eROSITA Science Book arXiv:1209.3114

eROSITA on SRG: the Mission

- Launch: Q3 2014 from Baykonour
- 3 Months: flight to L2, verification and calibration phase
- 4 years: 8 all sky surveys (scanning mode: 6 rotations/day, 1 degree advance per day)
- 3.5 years: pointed observation phase, including \sim 20% of GTO. 1 AO per year
- Proprietary data rights shared 50/50 between MPE (Germany) and IKI (Russia)
- German (MPE) half: proprietary period 2 yrs
- Public Release of all-sky scan data \sim every year

eROSITA Collaboration

PI: Peter Predehl; PS: A. Merloni (MPE) Core Institutes (DLR funding):

MPE, Garching/D Universität Erlangen-Nürnberg/D IAAT (Universät Tübingen)/D SB (Universität Hamburg)/D Astrophysikalisches Institut Potsdam/D

Associated Institutes:

MPA, Garching/D IKI, Moscow/Ru USM (Universität München)/D AIA (Universität Bonn)/D

Industry: Media Lario/I Mirrors, Mandrels Mirror Structures Kayser-Threde/D Carl Zeiss/D **ABRIXAS-Mandrels** Invent/D Telescope Structure pnSensor/D **CCDs** IberEspacio/E Heatpipes RUAG/A Mechanisms HPS/D,P MLI + many small companies

MPE: Scientific Lead Institute, Project Managment Instrument Design, Manufacturing, Integration & Test Data Handling & Processing, Archive etc.

eROSITA Telescope

www.mpe.mpg.de/eROSITA

Focal length 1.6 m F.o.V. = 0.81 sqdeg 54 nested mirror shells Total weight ~800 kg

7 identical telescopes (Wolter-I/ pnCCD-cameras) Energy range: 0.5-10 keV Energy resolution: 138 eV @ 6 keV Effective Area: ~1400 cm2 (@1keV)

- Telescope Structure: PFM Complete
- Mirrors: Qualified, 68% of all shells integrated, in spec (15")
- Cameras: Qualified (incl. p-radiation), in spec, CCDs 100%, FM Cooling System: PFM complete
- X-ray Baffles, Electron Deflector, Filterwheels etc: qualified, in manuf.
- FM-Electronics: Behind schedule

Next Steps

- Qualification Tests of complete instrument
- Delivery of a Technological Model to Lavochkin
- FM-1 Mirror Module complete
- Electronics, speeding up
- FM Mirror Modules tests and integration
- Delivery to Lavochkin 2013
- SRG Launch

Oct-Dec 2012 Oct 2012 Dec 2012 Nov 2012 Jan-Sep 2013 November

Merloni - eROSITA AGN - 4MOST Meeting, 11/2012

~30 pointings ~2 Msec

~1 pointing, 1.9 Mpc ~80 ksec

Churazov, IKI, MPA

eROSITA PSF

PointingSurveyOff-axis blurring of a Wolter-I telescope:PSF has to be averaged over the FoV15-17 arcsec on-axis → 28-25 arcsec averaged

Tentative timeline

(1) Survey	(2) f _{lim} (0.5-2 keV) [erg/s/cm²]	(3) AGN density [deg ⁻²]	(4) r _{AB,90}	(5) Catalog ready	(7) Public Release date (TBD)
eRASS:1	4.5×10 ⁻¹⁴	~14	21	July 2015 (T₀ +10m)	July 2017
eRASS:2	2.8×10 ⁻¹⁴	~30	21.6	January 2016 (T₀ +16m)	July 2018
eRASS:3	2.1×10 ⁻¹⁴	~45	21.9	July 2016 (T₀ + 22m)	
eRASS:4	1.8×10 ⁻¹⁴	~60	22.1	January 2017 (T₀ + 28m)	July 2019
eRASS:8	1.1x10 ⁻¹⁴	~90	22.6	January 2019 (T₀+52)	Jan 2021

Data Rights and Policies

- German eROSITA data made public after 2 yr proprietary period
- Periodic data releases envisaged (e.g. 6, 18, 30, 48 months)
- Proprietary data via German eROSITA Consortium
- Projects/Papers regulated by Working Groups
- Individual External Collaborations
- Group External Collaborations (negotiations/discussions underway with DES, CAASTRO, HSC)

Science Working Groups: Clusters and Cosmology	Infrastructure Working Groups:		
Shubberb und Gobinology	Data analysis, source extraction, catalogs		
AGN, Blazars	Multi-wavelength follow-up		
Normal Galaxies	Calibration		
Compact objects	Background		
Diffuse emission, SNR			

Merloni - eROSITA AGN - 4MOST Meeting, 11/2012

Stars, Solar System

Effective area vs. XMM

Merloni - eROSITA AGN - 4MOST Meeting, 11/2012

Effective area and grasp

FoV average Effective Area

Merloni - eROSITA AGN - 4MOST Meeting, 11/2012

