4MOST: Search for extremely metal-poor stars

H.-G. Ludwig

ZAH – Landessternwarte, Heidelberg

Extremely metal-poor (EMP) stars are rare

(N. Christlieb: metallicity distribution function from Hamburg-ESO Survey)

- Rule of thumb: number of EMP stars drops by factor 10 over one dex in metallicity currently known: \approx 3000 at [Fe/H] < -2</p>
- Christlieb's/Frebel's/Norris' star, Caffau's star missing
- \checkmark Mostly found in Halo (inner Halo peaks pprox -1.7)
 ightarrow we usually look there

Why are EMP stars interesting?

LETTER

doi:10.1038/nature10377

An extremely primitive star in the Galactic halo

Elisabetta Caffau^{1,2}, Piercarlo Bonifacio², Patrick François^{2,3}, Luca Sbordone^{1,2,4}, Lorenzo Monaco⁵, Monique Spite², François Spite², Hans–G. Ludwig^{1,2}, Roger Cayrel², Simone Zaggia⁶, François Hammer², Sofia Randich⁷, Paolo Molaro⁸ & Vanessa Hill⁹

Fossil record of creation and evolution of elements at the earliest times simplicity allows to derive strong constraints, e.g., on SN nucleosynthesis

Target counts

- Target counts derived from Galaxia model (Sharma et al. 2011) as provided by T. Pfiffl
- Restricted to sky accessible to 4MOST, $-70^{\circ} \le \delta \le +20^{\circ}$
- Number of halo sources is modest in terms of total number and density

abs(b)	$\mid N \text{ per } \deg^2 \mid$			$N_{\rm tot}(10^3)$	halo	thin	thick	bulge
90 80	255.8	±	27.9	84	1.00	0.00	0.00	0.00
80 70	224.2	\pm	13.4	279	1.00	0.00	0.00	0.00
70 60	270.8	\pm	11.2	588	1.00	0.00	0.00	0.00
60 50	295.6	\pm	9.9	897	1.00	0.00	0.00	0.00
50 40	319.7	\pm	9.5	1139	1.00	0.00	0.00	0.00
40 30	410.3	\pm	10.7	1476	1.00	0.00	0.00	0.00
90 30	320.2	\pm	4.8	4463	1.00	0.00	0.00	0.00
30 15	532.0	\pm	9.5	3107	1.00	0.00	0.00	0.00
15 0	471.1	\pm	8.5	3088	1.00	0.00	0.00	0.00

Halo objects, everything V < 20

K-giants

Giants, V<20, B-V>0.6, abs(V)<2.5, no metallicity constraint

abs(b)	— Л ре	er de	\mathbf{g}^2	$ N_{\rm tot}(10^3)$	halo	thin	thick	bulge
9030	84.2	\pm	2.5	1174	0.56	0.03	0.41	0.00
3015	578.7	\pm	10.0	3380	0.14	0.11	0.75	0.00
150	10062.9	±	39.2	65955	0.01	0.57	0.27	0.14

Giants, V<20, B-V>0.6, abs(V)<2.5, $\rm [Fe/H]<-2$

abs(b)	N per deg 2			$N_{\rm tot}(10^3)$	halo	thin	thick	bulge
90 30	14.3	\pm	1.0	200	1.00	0.00	0.00	0.00
30 15	23.1	\pm	2.0	135	1.00	0.00	0.00	0.00
150	35.4	\pm	2.3	232	0.97	0.03	0.00	0.00

- ▶ Halo DRSs: LR 2.6×10^6 K-giants at abs(b)>20, HR 1×10^5 at abs(b)>30
- Many of these distant sources are Halo giants \rightarrow low metallicity
- May provide several 10 hyper metal-poor (HMP) stars [Fe/H] < -5
- Caveat: LR Halo case asks for typical S/N≈10 per Å, sufficient to more than just identify HMP stars? If V≈19 limiting magnitude number drops by factor 7

Caffau's star, g=16.9, $[Fe/H] \approx -5.0$

Normalised Flux

▷ TOC

(Normalized noiseless spectra, F-dwarf, K-dwarf, K-giant)

- Spectral information content of K-dwarfs competitive with giants ... but intrinsically faint
- Additional nucleosynthetic signatures, e.g., Mg isotopic ratios

EMP dwarfs and subgiants

Hot dwarfs + subgiants, 7000 K> $T_{\rm eff}$ >5500 K, V<19, no metallicity constraint

abs(b)	N pe	r deg	s^2	$N_{\rm tot}(10^3)$	halo	thin	thick	bulge
90 30	929.9	\pm	8.2	12961	0.10	0.23	0.67	0.00
30 15	4892.3	\pm	28.9	28574	0.03	0.33	0.64	0.00
15 0	17329.2	\pm	51.4	113580	0.00	0.73	0.24	0.03

Hot dwarfs + subgiants, 7000 K> $T_{\rm eff}$ >5500 K, V<, [Fe/H] < -2

abs(b)	N p	er de	eg^2	$N_{\rm tot}(10^3)$	halo	thin	thick	bulge
90 30	28.6	\pm	1.4	398	1.00	0.00	0.00	0.00
30 15	43.1	\pm	2.7	252	1.00	0.00	0.00	0.00
15 0	27.8	\pm	2.1	182	1.00	0.00	0.00	0.00

Cool dwarfs + subgiants, 5500 K> $T_{\rm eff}{>}4000$ K, V<19, $\rm [Fe/H]<-2$

abs(b)	$ig N$ per deg 2 $ig $			$N_{\rm tot}(10^3)$	halo	thin	thick	bulge
90 30	2.1	\pm	0.4	29	1.00	0.00	0.00	0.00
30 15	0.9	\pm	0.4	5	1.00	0.00	0.00	0.00
15 0	1.4	\pm	0.5	9	1.00	0.00	0.00	0.00

EMP dwarfs and subgiants

- Dwarfs and subgiants add significantly to the pool of EMP candidates
- Effective pre-selection in terms of metallicity vital
- Target densities demand for combination with other observing programmes

Target pre-selection

- Indiscriminate search for EMP stars very inefficient \rightarrow target pre-selection
- Photometric pre-selection
 - GAIA photometry
 - Southern Sky Survey (if available)
- Kinematics from GAIA
 - Halo kinematics \rightarrow high speed \rightarrow (statistically) high proper motion
 - reduced proper motions
- Beware of selection biases

GAIA photometric system performance

(Liu et al. 2012, SVM algorithm, red lines give 50% and 90% percentile)

- Obs: here preferentially stars of "normal" metallicity
 - nevertheless: uncertainty about 1 dex at G=20 (by 2019?)

Adding GAIA proper motions?

(Yong & Lambert 2003, MS main-sequence stars, SD sub-dwarfs, WD white dwarfs)

- Example: cool sub-dwarfs from New Luyten Two-Tenth catalog ($\mu > 0''.18 \text{ yr}^{-1}$), photometry from 2MASS and USNO-A
- Reduced proper motion: apparent magnitude plus (log) proper motion
- Enhances discrimination but may add unwanted selection bias

Summary

- From Halo DRSs already a significant number of EMP to HMP stars can be expected
 - DRS S/N sufficient to characterize HMP stars?
 - additional exposures for increasing S/N?
- Dwarfs and subgiants potentially add a significant number of candidates
 - Illow for further investigations: isotopes, lithium abundance
- Efficient preselection essential
 - best procedure here?
 - interplay with disk/bulge LR DRS?
- Generally low target densities demand for combination with other programmes "science in parallel"