

4MOST and the Magellanic Clouds The megaMaC Survey

Olivier Schnurr (4MOST dPM)

The Magellanic Clouds: why they matter

- Large (LMC) and Small Magellanic Cloud (SMC) are dwarf irregulars
- LMC is largest satellite of our Milky Way, and third closest
- connected to SMC via Magellanic Stream (post-near miss HVC)
- Very well known distance and low and fairly uniform extinction:
 - LMC: 50 kpc, DM = 18.5 mag, Av = 0.5 mag typically
 - SMC: 60 kpc, DM = 18.9 mag, Av = 0.2 mag typically
- Can be resolved into individual stars: complete populations!
- Lower-than-solar metallicity: LMC: ~0.5 Z_⊙, SMC: ~0.2 Z_⊙
- Easily observable in the optical

The Clouds are ideal laboratories for stellar astrophysics!

The Magellanic Clouds post-Gaia

- Gaia will finally render the Milky Way a good place for stellar astrophysics (known distances, sample size, completeness, etc.)
- The MCs will retain their special status for stellar astrophysics even (or rather: especially) after Gaia
- Differential analyses of metallicity effects on stellar populations in MW, LMC, and SMC with statistically viable samples
- Any stellar science case is for these three galaxies, thus MCs should be seen in context with Galactic science (and v.v.)
- Ideally, every study of stellar populations in the Galaxy is complemented by a similar study in the Clouds

4MOST makes such studies possible at very large scale; hence requests for survey(s) in MCs will come up, and have to be accommodated!

A 4MOST survey in the Clouds: motivation (1)

- Current 4MOST key science (DRS) are large-area, single-visit surveys
- Any additional science can be accommodated as long as it is largearea, single-visit, too (demonstrator: BAO)
- Small-area, repeated-visits surveys are not yet implemented in 4MOST science operations (no such DRS), but could emerge as key science surveys during later project phases
- As example of such a small-area, repeated-visits survey, we have created a "container survey" for the MCs: megaMaCS
- Primary goal: to study impact on 4MOST key science surveys
 - Robustness of DRS strategies (and optimization thereof) in presence of "adverse" requirements (e.g., use up dark time, massive repeats)
 - More realistic operations scenario (expectation management)
- Secondary goal: to provide a scientific envelope for such a survey

A 4MOST survey in the Clouds: motivation (2)

- Main driver: variable stars in the Clouds (following up of OGLE, etc.)
 - Cepheids and RR Lyr:
 - calibrators for cosmic distance scale
 - (eclipsing) Binaries:
 - calibrators for stellar structure models and atmospheres (radii, temperatures, luminosities, masses), binary fraction... fundamental for 4MOST key science
 - independent calibrators for distances
 - Follow-up of eROSITA: high/low-mass X-ray binaries, etc.
 - Any other variables: SPB stars, transients (LBV, novae, etc.)
- Additional, single-visit science
 - Open clusters (1000 clusters identified in MCs so far):
 - calibrators for age-Z relation, internal Z spread, tracer of LMC (bar) rotation, internal kinematics, dynamical evolution, etc.
 - Field stars:
 - All things 4MOST, but in MCs: chemo-dynamical evolution, etc...
 - Characterization of complete populations (follow-up VMC, etc.), SFH, rotation, etc.
 - 3D structure of MCs; fully characterized populations down to M_v = 2

A 4MOST survey in the Clouds: data products

The current system should be able to deliver (full co-add)

• LR: in 80 hrs, S/N~10 for R~22.5 mag kinematic studies

S/N~40 for R~21.5mag chemical abundances

HR: in 80 hrs, S/N~40 for R~18 mag chemical abundances

In 2 hrs, S/N~40 for R~16 mag RVs (Cepheids, RR Lyr,

clusters)

The Clouds really do push the limits of a 4m-class telescope...

A 4MOST survey in the Clouds: by-products

- High-precision extinction maps towards Clouds
- In combination with Gaia: fairly complete and well-characterized foreground population
- High-velocity stars from MCs

Approx. numbers from OGLE-II and –III campaigns (out of ~40 millions sources in LMC/SMC)

40 sqdeg 20 sqdeg 100 sqdeg

Type of variables	LMC	SMC	Galactic Bulge
Classical Cepheids	3,400	4,600	30
Type II Cepheids	200	40	390
RR Lyrae	24,000	2,500	16,800
Long-period variables	92,000	19,000	n/a
Ellipsoidal variables	1,700	n/a	n/a
Eclipsing binaries	29,000	1,400?	10,000
Miras and SRVs	3,000	n/a	n/a
Other variable stars			200,000

from OGLE website

Limited numbers, but demanding S/N and time-coverage requirements!

4MOST and the Magellanic Clouds: megaMaCS

LMC

OGLE-II fields OGLE-III fields (from OGLE website)

4MOST and the Magellanic Clouds: megaMaCS

SMC

OGLE-II fields OGLE-III fields (from OGLE website)

A 4MOST survey in the Clouds: design

LMC survey

- Covered area: 4.7° x 6.4° = 30 sqdeg, organized in 16 fields à 4 sqdeg FOV each
- 40 repeats per field
- 16 x 40 x 1600 = **1,024,000 LR spectra** (half of that unique)
- 16 x 40 x 800 = **512,000 HR spectra** (mostly for co-adds)
- Total number of spectra LMC: 1,536,000; unique ~106
- 6 x 20 min = 120 min exposure time; total loitering time 2.4 hrs per field
- Total time spent on LMC: 1,540 hrs

SMC survey

- Covered area: 3.5° x 4.7° = 14 sqdeg, organized in 6 fields à 4 sqdeg FOV each
- 40 repeats per field
- 6 x 40 x 1600 = **384,000 LR spectra** (half of that unique)
- 6 x 40 x 800 = **192,000 HR spectra** (mostly for co-adds)
- Total number of spectra SMC: 576,000; unique ~300k
- 6 x 20 min = 120 min exposure time; total loitering time 2.4 hrs per field
- Total time spent on SMC: 580 hrs

Total time spent on Clouds: 2100 hrs of dark and grey time (as substantial as a DRS!)

one million stars in the Magellanic Clouds Survey: megaMaCS

A 4MOST survey in the Clouds: options

Go wider:

- probe outer LMC disk (kinematics, dark matter, etc.)
- cover Magellanic Bridge
- complement OGLE-IV plus any future OGLE, and VST/LSST surveys (however, existing, 1m-class imaging already pushes limit of 4m spectroscopy)

Go deeper

Probably not an option...

Credit: Yuri Beletsky (ESO)

OGLE-IV fields overlaid on high-contrast image of LMC

Covers essentially the entire LMC disk + control fields

from OGLE website

LMC CLUSTER VELOCITIES

From Storm et al. (1991):

RVs of three clusters with LMC-centric distances of 8 to 12 kpc, i.e. far off the LMC bar

A 4MOST survey in the Clouds: options

- Go wider:
 - probe outer LMC disk (kinematics, dark matter, etc.)
 - add Magellanic Bridge
 - complement OGLE-IV plus any future OGLE, and VST/LSST surveys
 - however, existing, 1m-class imaging already pushes limit of 4m spectroscopy
- Go deeper
 - Probably not an option...
- Go narrower
 - Regions of interest in the Clouds?
- Reduce repeats
 - Limit covered period space of variable stars

megaMaCS and 4MOST key science: conclusion

- By design, megaMaCS is merely a "container survey"
- No science that is proper to the MCs
- Due to Gaia, Galactic Disk plus Bulge offer very similar science opportunities (cf. ESO-Gaia survey):
 - Eclipsing binaries to calibrate Galactic stellar models (self-consistent within the framework of 4MOST data!); follow-up of OGLE, VVV, etc.
 - Cepheids, RR Lyr, et al. (Z effects)
 - Clusters (age-Z, etc.), rotation + mixing
 - Respective science cases will apply for significant amount of 4MOST time in the MCs (up to ~few 1000s hours)
 - Variable Stars towards the Galactic Bulge Survey: VariBuS (with OGLE-IV)
- The 4MOST consortium anticipates this community request
- Accommodation of megaMaCS/VariBuS-like surveys is currently under study (no mock input catalogs will be harmed during Phase A)